
A Parallel Projection Method for Metric Constrained Optimization

Cameron Ruggles ∗ Nate Veldt † David F. Gleich ‡

Abstract
Many clustering applications in machine learning and data
mining rely on solving metric-constrained optimization prob-
lems. These problems are characterized by O(n3) constraints
that enforce triangle inequalities on distance variables asso-
ciated with n objects in a large dataset. Despite its useful-
ness, metric-constrained optimization is challenging in prac-
tice due to the cubic number of constraints and the high-
memory requirements of standard optimization software.
Recent work has shown that iterative projection methods
are able to solve metric-constrained optimization problems
on a much larger scale than was previously possible, thanks
to their comparatively low memory requirement. However,
the major limitation of projection methods is their slow con-
vergence rate. In this paper we present a parallel projection
method for metric-constrained optimization which allows us
to speed up the convergence rate in practice. The key to our
approach is a new parallel execution schedule that allows us
to perform projections at multiple metric constraints simul-
taneously without any conflicts or locking of variables. We
illustrate the effectiveness of this execution schedule by im-
plementing and testing a parallel projection method for solv-
ing the metric-constrained linear programming relaxation of
correlation clustering. We show numerous experimental re-
sults on problems involving up to 2.9 trillion constraints.

1 Introduction
Many tasks in machine learning and data mining, in par-
ticular problems related to clustering, rely on learning
pairwise distance scores between objects in a dataset
of n objects. One particular paradigm for learning
distances, that arises in a number of different con-
texts, is to set up a convex optimization problem in-
volving O(n2) distance variables and O(n3) metric con-
straints which enforce triangle inequalities on the vari-
ables. This approach has been applied to problems in
sensor location [19, 20], metric learning [6, 7], metric

∗Dept. of Computer Science, Purdue University. Email:
cruggles@purdue.edu.

†Center for Applied Mathematics, Cornell University. Email:
nveldt@cornell.edu.

‡Dept. of Computer Science, Purdue University. Email:
dgleich@purdue.edu. Supported by DARPA SIMPLEX and NSF
award CCF-1149756, IIS-1422918, IIS-1546488, CCF093937 and
the Sloan Foundation.

nearness [8,14,15], and joint clustering of image segmen-
tations [21, 39]. Metric-constrained optimization prob-
lems also frequently arise as convex relaxations of NP-
hard graph clustering objectives. A common approach
to developing approximation algorithms for these clus-
tering objectives is to first solve a convex relaxation and
then round the solution to produce a provably good out-
put clustering [11,28,38].

The constraint set of metric-constrained optimiza-
tion problems may differ slightly depending on the ap-
plication. However, the common factor among all of
these problems is that they involve a cubic number of
constraints of the form xij ≤ xik + xjk where (i, j, k) is
a triplet of points in some dataset and xij is a distance
score between two objects i and j. This leads to an ex-
tremely large, yet very sparse and carefully structured
constraint matrix. Given the size of this constraint ma-
trix and the corresponding memory requirement, it is
often not possible to solve these problems on anything
but very small datasets when using standard optimiza-
tion software. In recent work [37] we showed how to
overcome the memory bottleneck by applying memory-
efficient iterative projection methods, which provide a
way to solve these problems on a much larger scale
than was previously possible. Unfortunately, although
projection methods come with a significantly decreased
memory footprint, they are also known to exhibit very
slow convergence rates. In particular, the best known
results are obtained by specifically applying Dykstra’s
projection method [16], which is known to have a only
a linear convergence rate [17].

Given the slow convergence rate of Dykstra’s
method, a natural question to ask is whether one can
improve its performance using parallelism. There does
in fact already exist a parallel version of Dykstra’s
method [26], which performs independent projections
at all constraints of a problem simultaneously, and then
averages the results to obtain the next iterate. How-
ever, this procedure is ineffective for metric-constrained
optimization, since averaging over the extremely large
constraint set leads to changes that are so small no
meaningful progress is made from one iteration to the
next. As another challenge, we note that many of the
most commonly studied metric-constrained optimiza-
tion problems are linear programs [1, 11, 19, 21, 38, 39].

43 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Linear programming is P-complete, and therefore it is
widely assumed that they are hard to parallelize in gen-
eral. Although there is some existing work on par-
allel interior point solvers, these only solve LPs ap-
proximately and involve highly ill-conditioned problems
nearby the solution. Thus, finding meaningful ways to
solve metric-constrained optimization problems in a way
that is both fast and memory efficient possess several
significant challenges.

In this work we take a first step in parallelizing
projection methods for metric-constrained optimization.
This leads to a modest but consistent reduction in run-
ning time for solving these challenging problems on
a large scale. Our approach relies on the observa-
tion that when applying projection methods to metric-
constrained optimization, two projection steps can be
performed simultaneously and without conflict as long
as the (i, j, k) triplets associated with different metric
constraints share at most one index in common. Based
on this, we develop a new parallel execution schedule
which identifies large blocks of metric constraints that
can be visited in parallel without locking variables or
performing conflicting projection steps. Because Dyk-
stra’s projection methods also relies on carefully updat-
ing dual variables after each projection, we also show
how to keep track of dual variables in parallel and up-
date them at each pass through the constraint set. We
demonstrate the performance of our new approach by
using it to solve the linear programming relaxation of
correlation clustering [5]. Solving this LP is an impor-
tant first step in many theoretical approximation algo-
rithms for correlation clustering [2, 10, 11, 34, 35, 38]. In
our experiments we consistently obtain a speedup of
roughly a factor 5 over the serial method using even
a small number cores, and achieve a speedup of over a
factor of 11 for our largest problem. Our new approach
allows us to handle problems containing up to nearly 3
trillion constraints in a fraction of the time it takes the
serial method.

2 Background
We use the term metric-constrained optimization or
more simply metric optimization to refer to any con-
vex optimization problem involving constraints of the
form xij ≤ xik + xjk where xij represents a distance
variable between two points i and j in a large graph or
dataset. Our work builds directly on previous results for
solving optimization problems of this form using projec-
tion methods [8, 36, 37]. In this section we specifically
consider the metric-constrained linear programming re-
laxation for correlation clustering and its relationship
to what is known as the metric nearness problem. We
will use this LP relaxation as a special case study in

this paper, although the parallel approach we develop
can in principle be applied to any metric optimization
problem.

2.1 Metric Nearness and Correlation Cluster-
ing One key example of metric optimization is the met-
ric nearness problem [8,36], in which one is given matrix
D = (dij) of dissimilarity scores between objects in a
dataset. The goal is to find the matrix X = (xij) whose
entries satisfy the triangle inequality and for some value
of p minimizes

(2.1) ||X −D||p =

(∑
ij

wij |xij − dij |p
)1/p

,

where wij is a nonnegative weight indicating the how
strongly we wish xij to be similar to dij . The problem
can be cast as a linear program when p = 1, a quadratic
program when p = 2, and a slightly more complicated
convex optimization problem for other finite values of
p. One can also consider a p = ∞ norm version of the
problem which minimizes the the maximum of |xij−dij |
over all pairs i, j. This can also be cast as an LP.

Metric-constrained optimization is also a key in-
gredient in approximation algorithms for correlation
clustering [5]. In correlation clustering one is given a
weighted and signed graph G = (V,E+, E−,W). Each
pair of nodes (i, j) in G defines either a positive edge
(i, j) ∈ E+ or a negative edge (i, j) ∈ E−. The goal is
to partition V in such a way that negative edges tend
to link nodes between different clusters, and positive
edges link nodes inside the same cluster. The problem
also comes with weights W = (wij) where wij indicates
the strength of the relationship between i and j. One
formulation of the problem is to minimize the weight
of mistakes, which can be cast as the following binary
linear program:
(2.2)
minimize

∑
(i,j)∈E+ wijxij +

∑
(i,j)∈E− wij(1− xij)

subject to xij ≤ xik + xjk for all i, j, k
xij ∈ {0, 1} for all i, j.

A positive mistake happens when two nodes with a pos-
itive edge are clustered apart (xij = 1), and this comes
with a penalty equal to the weight wij . A negative
mistake is when two nodes sharing a negative edge are
clustered together, in which case the penalty is again
wij = wij(1−xij) since in this case xij = 1. We can re-
lax (2.2) to a linear program by substituting xij ∈ {0, 1}
with the constraint xij ∈ [0, 1]. Solving this relaxation
and then rounding the solution is a general strategy that
has lead to a number of approximation algorithms for
different variants of correlation clustering. For arbitrary

44 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

weights, there exists an O(log n) approximation round-
ing scheme [13]. When the graph is unweighted (i.e.
wij = 1 for all pairs i, j), the best rounding scheme pro-
duces an approximation ratio near 2 [11]. Several other
special weighted cases also obtain their best known ap-
proximation factor by solving the relaxation of (2.2) and
rounding [2, 35,38].

In recent work [37] we proved that the LP relaxation
of (2.2) can be cast equivalently as a special case of the
metric nearness problem (2.1) when p = 1. Specifically,
given an instance of correlation clustering, define a
dissimilarity score dij = 1 if (i, j) ∈ E−, and set
dij = 0 otherwise. Then the `1 metric nearness problem
and the LP relaxation of correlation clustering are both
equivalent to the following metric-constrained LP:

(2.3)

minimize
∑

i<j wijfij
subject to xij ≤ xik + xjk for all i, j, k

xij − dij ≤ fij for all i, j
dij − xij ≤ fij for all i, j.

2.2 Projection Methods for Metric Optimiza-
tion Although solutions to problems such as (2.1),
(2.3), and other metric optimization problems are desir-
able from a theoretical perspective, they are challeng-
ing to solve for even modest values of n due to the cu-
bic constraint set. Standard commercial optimization
packages are typically unable to handle problems with
even a few hundred nodes when the full constraint set
is included, due to memory limitations. Sra et al. be-
gan to address this problem specifically for the metric
nearness problem [36]. Their approach was to apply
memory-efficient projection methods, which visit con-
straints cyclically and iteratively update variables in a
manner that is proven to converge to the optimal solu-
tion.

Recently, we showed how the techniques of Sra
et al. can be adapted and improved to apply more
broadly to a wider range of linear and quadratic metric-
constrained optimization problems [37]. These results
come with new approximation guarantees for specific
graph clustering objectives, and are designed to produce
output solutions with better constraint satisfaction and
convergence guarantees. Here we review the main
background for applying Dykstra’s method to metric-
constrained linear programming. For details on how to
apply projection methods to metric-constrained convex
optimization problems that are not linear programs, we
refer the reader to other work [8, 36].

Metric-Constrained Linear Programming
Consider a general linear program of the form

(2.4) min cTx s.t. Ax ≤ b.

Encoding a metric-constrained LP in this format can
be accomplished by letting x encode a linearization of
the distance variables xij and potentially other variables
depending on the specific optimization problem. The
constraint matrix A will encode metric constraints and
other problem specific constraints, (e.g. the non-metric
constraints xij − dij ≤ fij in (2.3)). Because of the
metric constraints, A will be large, sparse, and very
structured.

Projection methods do not apply directly to solving
linear programs, so we first consider a regularized linear
program

(2.5) min cTx+
ε

2
xTWx s.t. Ax ≤ b

where ε is a positive constant and W is a positive
definite diagonal matrix of weights. Both ε and W
are viewed as parameters that can be chosen to control
the relationship between (2.4) and (2.5). When W is
the identity matrix, solving (2.5) for a small enough
value of ε will output the smallest norm solution to the
LP (2.4) [31]. Furthermore, our recent work provides
specific details for how to set ε and W to bound
the difference between the original linear program and
the related quadratic program (2.5) for specific graph
clustering relaxations [37].

Applying Projection Methods The quadratic
program (2.5) can be solved using memory-efficient pro-
jection methods, which iteratively visit constraints and
perform correction and projection steps that slowly fix
constraint violations, update dual variables, and eventu-
ally converge to the unique optimal solution. Following
previous work [36,37], we specifically consider Dykstra’s
method, which for quadratic programs is equivalent to
Hildreth’s method [23] and Han’s method [22]. We pro-
vide pseudocode for applying this method to (2.5) in
Algorithm 1.

Localized Metric Projections For a more in-
depth explanation of the algorithm, we refer to our pre-
vious work [37]. The key thing to realize is that Algo-
rithm 1 is simply Dykstra’s method applied specifically
to solve (2.5). Most importantly, updates of the form
x := x+cW−1ai for a constant c can be performed very
quickly for metric constraints, since in this case ai (the
ith row of constraint matrix A) has only three nonzero
entries.

For illustration, we show how to perform the pro-
jection step in Algorithm 1 when x = (xij) is a lin-
earization of the distance variables, and W is the iden-
tity matrix (note that the projection step is unaffected
by the value of ε, so we do not specify its value here).
Row a of A and entry b of b encode the constraint
aTx = xij − xik − xjk ≤ 0 = b. For this constraint,
a has three nonzero entries: 1, −1, and −1, corre-

45 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Algorithm 1 Dykstra’s Method for Quadratic Pro-
gram (2.5)

(M,N) = number of rows and columns of A respec-
tively
y := 0 ∈ RM (dual variables)
x := − 1

εW
−1c, k := 0

while not converged do
5: k := k + 1

(Visit next constraint): i := (k − 1) modM + 1
(Correction step): x := x+ yi(

1
εW

−1ai)
where ai is the ith row of A

(Projection step): x := x− θ+i (1εW
−1ai)

10: where θ+i = ε
max{aT

i x−bi,0}
aT
i W−1ai

(Dual variable update): yi := θ+i ≥ 0

sponding to the locations of xij , xik, and xjk in x.
If δ = aTx = xij − xik − xjk ≤ 0, then the con-
straint is already satisfied, and max{aTx − b, 0} = 0,
thus there is no update to the vector x. If δ > 0, then
max{aTx − b, 0} = δ = xij − xik − xjk, and aTa = 3.
The projection step in Algorithm 1 updates only three
entries of x:

xij ← xij−δ/3, xik ← xik+δ/3, xjk ← xjk+δ/3.

The correction step in Algorithm 1, which is necessary
to guarantee convergence, can be performed in a similar
localized manner.

Slow Convergence Rate The decreased memory
footprint of Dykstra’s method makes it possible to solve
metric constrained problems on a much larger scale than
was previously possible [37]. However, this method
converges very slowly, given that the convergence rate
for Dykstra’s method applied to quadratic programs is
only linear [17].

3 Parallel Metric Constrained Optimization
The primary contribution of our work is to show how
to parallelize projection methods specifically for metric-
constrained optimization problems. We accomplish this
by showing how to visit multiple metric constraints
at once and perform a large number of projections
simultaneously without conflicts or locking variables.

3.1 Performing Two Simultaneous Projections
To develop intuition for our approach, we consider two
sets of triplets t1 = (a, b, c) and t2 = (i, j, k), where the
indices within each triplet are distinct, but some indices
may be the same across both triplets. Each of these
triplets is associated with three metric constraints, thus
three projection steps that must be performed during
one pass through the constraint set using Dykstra’s

method.
Performing projections associate with triplet t1 in-

volves variables {xab, xbc, xac}. Similarly, triplet t2 is as-
sociated with variables {xij , xjk, xik}. Note that if these
triplets share two indices (e.g. a = i and b = j), then we
cannot perform projections at both constrains in paral-
lel without conflict, since one variable (e.g. xab = xij)
would be updated by both projections. However, if
t1 and t2 share at most one index in common, then
{xab, xbc, xac, xij , xjk, xik} are all distinct and we can
perform projection steps in Dykstra’s iteration at t1 and
t2 at the same time. Our goal is to use this observation
to develop a parallel execution schedule that will allow
us to visit a large number of metric constraints at once
and perform simultaneous projection steps without con-
flicts. Because this amounts simply to a re-ordering of
constraints in a way that is more easily parallelizable,
this will not affect the convergence guarantees of Dyk-
stra’s method.

3.2 New Ordering for Visiting Triplets We ab-
stract the process of visiting metric constraints to the
process of enumerating triplets of the form (i, j, k) where
1 ≤ i < j < k ≤ n. Let T denote this set of ordered
triplets. Each fixed ordered triplet will be associated
with three different metric constraints, and hence three
different projection steps, that we assume will be han-
dled by the same processor in a parallelized projection
method.

Based on our intuitive observation in the previous
section, we wish to group the triplets in T into subsets
S1, S2, . . . , S` in such a way that Su∩Sv = ∅,

⋃`
u=1 Su =

T , and such that any two triplets in different sets
will share at most one index in common. If we can
accomplish this, then we can assign each set Su to
a different thread or processor. The work done at
each processor (i.e. each set of triplets) will be then
completely independent of work performed at other sets
by different processors.

To accomplish this we define sets of triplets in which
the smallest and largest indices are fixed values i, k such
that k ≥ i+ 2. We specifically define

Si,k = {(i, j, k) ∈ T : k ≥ i+ 2, 1 ≤ i < j < k ≤ n}

which includes all triplets with i as the smallest index
and k as the largest index. In Figure 2 we show a
grid of (i, k) pairs associated with Si,k sets. Observe
that drawing lines along downward-sloping diagonals of
this grid highlights a large number of sets that can be
processed simultaneously, i.e any two triplets taken from
different sets along the diagonal will share at most one
common index. Note that for a fixed x, z satisfying
z ≥ x + 2, the diagonals in Figure 2 are made up of

46 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Input: integer n
Output: triplets (i, j, k) s.t. 1 ≤ i < j < k ≤ n

x = 1 // First double loop fixes x
for z = n : −1 : 3

g = floor((z − x− 2)/2)

for c = 0 : 1 : g
i = x+ c

k = z − c

List triplets in Si,k

// Different sets of triplets
// share at most one index

end
end
z = n // Second double loop fixes z

for x = 2 : 1 : (n− 2)
g = floor((z − x− 2)/2)

for c = 0 : 1 : g

i = x+ c
k = z − c

List triplets in Si,k

// Different sets of triplets
// share at most one index

end
end

Figure 1: Loops for listing all triplets in T . The
inner loops can be perfectly parallelized when we are
performing projections at metric constraints of the form
xij ≤ xik+xjk, since any two triplets from different Si,k

sets will share at most one triplet index in common.

sets of the form Sx+c,z−c for c = 0, 1, 2, . . . ,
⌊
z−x−2

2

⌋
.

The upper bound c ≤ z−x−2
2 is chosen to guarantee

that 2 + (x + c) ≤ (z − c), implying that Sx+c,z−c
contains at least one ordered triplet from T . Based
on this observation, in Figure 1 we show how to loop
through all triplets in T in such a way that the inner loop
iterates through sets Sx+c,z−c that can be processed
simultaneously. The code in Figure 1 contains two
double loops for visiting Si,k sets. The first double
loop handles the main diagonal of sets in Figure 2
and everything above below it, and the second double
loop iterates through the sets above the main diagonal.
Equivalently, for the first double loop we set x = 1 and
z ≤ n, and then in the outer loop decrement z by one
at each step. The second double loop fixes z = n and
iterates through all possibilities x ∈ [2, n − 2] in the
outer loop.

3.3 Load Balancing and Tiled Triplet Assign-
ment One issue we must address with our listing of
triplets in Figure 1 is the load balance. There is variabil-
ity in both the number of triplet sets in the parallelized
inner loop (i.e. the number of entries along a given di-
agonal in Figure 2), as well as the size of each triplet
set within the same inner loop (i.e. different entries in

(1,:,12) (2,:,12) (3,:,12) (4,:,12) (5,:,12) (6,:,12) (7,:,12) (8,:,12) (9,:,12) (10,:,12)

(1,:,11) (2,:,11) (3,:,11) (4,:,11) (5,:,11) (6,:,11) (7,:,11) (8,:,11) (9,:,11)

(1,:,10) (2,:,10) (3,:,10) (4,:,10) (5,:,10) (6,:,10) (7,:,10) (8,:,10)

(1,:,9) (2,:,9) (3,:,9) (4,:,9) (5,:,9) (6,:,9) (7,:,9)

(1,:,8) (2,:,8) (3,:,8) (4,:,8) (5,:,8) (6,:,8)

(1,:,7) (2,:,7) (3,:,7) (4,:,7) (5,:,7)

(1,:,6) (2,:,6) (3,:,6) (4,:,6)

(1,:,5) (2,:,5) (3,:,5)

(1,:,4) (2,:,4)

(1,:,3) i
k

Figure 2: We illustrate how to parallelize visiting metric
constraints when n = 12. Rectangle (i, :, k) in the grid
represents the set of all ordered triplets Si,k for which i is
the first index and k is the last index. When performing
projections at metric constraints, sets of the same color
can be processed simultaneously without conflict. Each
color corresponds to all the Si,k sets that are listed by
the inner loop of the first double loop in Figure 1, for a
fixed z. The second double loop in Figure 1 corresponds
to the upper triangular portion of the grid (in white).

the same diagonal of the grid in Figure 2). For example,
when x = 1 and for a fixed z, there are (z−3)/2+1 sets,
and these sets have variable size z−2(c+1) for different
values of c ranging from 0 to (z − 3)/2). We begin by
noting that the vast majority of the triplets are visited
for values of z = O(n). Secondly, we assume that the
number of threads or processors p we use when iterat-
ing over sets is significantly smaller than the problems
size n, and we can assign sets of triplets to processors
in a way that will not be too imbalanced. For a diago-
nal defined by fixed x, z values, there are

⌊
z−x−2

2

⌋
sets

of triplets. If we assigned the first group of n/p triplet
sets to the first processor, and in general assigned the
rth group of n/p triplet sets to the rth processor, this
would indeed lead to a significant imbalance. However,
in practice, we balance the load much more effectively
by assigning the rth set Si,k to processor r mod p. In
this way each processor is responsible for different triplet
sets with a range of different sizes, for an overall load
that is roughly balanced. We illustrate this load bal-
anced assignment in Figure 3.

We also improve our parallel execution schedule by
implementing a tiled approach to triplet set assignment
for better cache efficiency when accessing distance vari-
able in the matrix X = (xij). This is inspired by previ-
ous work on tiled matrix multiplication, though it dif-
fers slightly in order to apply to enumerating triplets
specifically for metric constrained projection methods.
In short, this tiled strategy corresponds to substituting
the diagonal pattern in Figure 2 with the block diago-
nal pattern shown in Figure 4. In more detail, for a tile

47 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1,:,12) (2,:,12) (3,:,12) (4,:,12) (5,:,12) (6,:,12) (7,:,12) (8,:,12) (9,:,12) (10,:,12)

(1,:,11) (2,:,11) (3,:,11) (4,:,11) (5,:,11) (6,:,11) (7,:,11) (8,:,11) (9,:,11)

(1,:,10) (2,:,10) (3,:,10) (4,:,10) (5,:,10) (6,:,10) (7,:,10) (8,:,10)

(1,:,9) (2,:,9) (3,:,9) (4,:,9) (5,:,9) (6,:,9) (7,:,9)

(1,:,8) (2,:,8) (3,:,8) (4,:,8) (5,:,8) (6,:,8)

(1,:,7) (2,:,7) (3,:,7) (4,:,7) (5,:,7)

(1,:,6) (2,:,6) (3,:,6) (4,:,6) p=1

(1,:,5) (2,:,5) (3,:,5) p=2

(1,:,4) (2,:,4) p=3

(1,:,3) i
k

Figure 3: In theory, all sets of triplets along the same
diagonal could be handled simultaneously if they were
assigned to different processor. In practice, the number
processors p is much smaller than n. We balance the
load among processors by assigning the rth set on
a diagonal to processor r mod p (where processor 0
and processor p are the same). Here we illustrate the
assignment of triplet sets to processors along the main
diagonal when n = 12 and p = 3.

size b, each tile is defined by a fixed (x, z) pair, and is
made up of all Si,k sets where i ∈ {x, x+1 . . . , x+b−1}
and k ∈ {z, z − 1, . . . , z − b + 1}. Much like in the un-
tiled case, we note that different tiles of the same color
in Figure 4 can be visited by different processors at the
same time without conflict. That is, different processors
will access completely independent parts of the matrix
X. When assigning p processors to tiles along a block
diagonal, we assign the rth tile to processor r mod p,
generalizing the strategy outlined in Figure 3 for the
untiled case.

Each tile, which is defined by a fixed pair (x, z)
and a tile size b, is associated with b choices for the
smallest index i and b choices for the largest index
k. The processor assigned to this tile must then
iterate through all valid middle indices j and perform
projections corresponding to triplets of the form (i, j, k).
One approach for doing this would be to consider each
(i, k) pair in turn and iterate through all values of j
from j = i + 1 to j = k − 1. However, for better cache
efficiency, we instead split the full range of possible j
values from x + 1 to z − 1 into subintervals that are
also of length b. This gives us a sequence of b × b × b
cubes of (i, j, k) values, each associated with entries xij ,
xik, and xjk from X. Within each of these cubes, we
iterate through triplets in a way that maximizes column
locality (assumingX is stored in column major format),
before moving on to the next cube. We give a simple

(1,:,14) (2,:,14) (3,:,14) (4,:,14) (5,:,14) (6,:,14) (7,:,14) (8,:,14) (9,:,14) (10,:,14) (11,:,14) (12,:,14)

(1,:,13) (2,:,13) (3,:,13) (4,:,13) (5,:,13) (6,:,13) (7,:,13) (8,:,13) (9,:,13) (10,:,13) (11,:,13)

(1,:,12) (2,:,12) (3,:,12) (4,:,12) (5,:,12) (6,:,12) (7,:,12) (8,:,12) (9,:,12) (10,:,12)

(1,:,11) (2,:,11) (3,:,11) (4,:,11) (5,:,11) (6,:,11) (7,:,11) (8,:,11) (9,:,11)

(1,:,10) (2,:,10) (3,:,10) (4,:,10) (5,:,10) (6,:,10) (7,:,10) (8,:,10)

(1,:,9) (2,:,9) (3,:,9) (4,:,9) (5,:,9) (6,:,9) (7,:,9)

(1,:,8) (2,:,8) (3,:,8) (4,:,8) (5,:,8) (6,:,8)

(1,:,7) (2,:,7) (3,:,7) (4,:,7) (5,:,7)

(1,:,6) (2,:,6) (3,:,6) (4,:,6)

(1,:,5) (2,:,5) (3,:,5)

(1,:,4) (2,:,4)

(1,:,3) i

k

Figure 4: We illustrate the tiling approach for visiting
triplet sets when n = 14 and tile size b = 2. Triplets
in different tiles along the same diagonal can be visited
simultaneously without conflict when assigned to differ-
ent processors. Organizing sets Si,k into b× b tiles and
carefully iterating through middles indices j allows for
better cache efficiency when accessing variables in the
matrix X.

illustration of this in Figure 5. Depending on the values
of x,z, and b, we will of course not be able to organize
all triplets into perfect b× b× b cubes of (i, j, k) triplets
satisfying i < j < k. In practice however for large
values of n and b� n, this approach will still provide a
balanced and cache efficient way to access variables in
X.

3.4 Storing Dual Variables for Parallel Compu-
tations In addition to updating primal variables (xij),
Dykstra’s method requires we keep track of dual vari-
ables as a part of correction step (line 7 in Algorithm 1)
that is necessary to guarantee convergence to the opti-
mal solution. Specifically, for each metric constraint as-
sociated with a triplet (i, j, k), there is a corresponding
dual variable yijk that is updated during each visit to a
constraint. This variable is only nonzero if in the previ-
ous pass through the constraints, there was a non-trivial
projection step (i.e. the entries xij , xik, xjk changed).
For serial projection methods for metric optimization,
the metric constraints are visited in the same order in
every pass through the constraint set [37]. This makes
it possible to effectively query dual variables from an ar-
ray that stores tuples of the form (tijk, yijk) where tijk
is a unique index associated with a metric constraint
and yijk is the dual variable. For memory-efficiency,
these tuples are only stored for nonzero dual variables:
yijk > 0. Because the serial version visits constraints
in the same order each round, the array is always tra-
versed in the same order. At each step, the method

48 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1,:,8) (2,:,8) (3,:,8) (4,:,8) (5,:,8) (6,:,8)

(1,:,7) (2,:,7) (3,:,7) (4,:,7) (5,:,7)

(1,:,6) (2,:,6) (3,:,6) (4,:,6)

(1,:,5) (2,:,5) (3,:,5)

(1,:,4) (2,:,4)

(1,:,3) i
k

k

i

j

Figure 5: Each tile in the (i, k) grid is assigned to
different processor. The blue section in the left image
corresponds to a single tile when b = 2 and n = 8. When
a processor is assigned such a tile, it also separates
options for the middle index j into groups of b choices.
The processor then iterates through triplets (i, j, k) in
cubes of size b× b× b in a way that maximizes column
locality and cache efficiency when accessing entries of
the form xij , xik, xjk from the distance matrix X. The
right figure highlights this process specifically for the
tile in the figure on the left. The processor handles
each colored section in turn. Some of the cubes are
incomplete, since triplets such as (2, 2, 8), (2, 2, 7), and
(2, 7, 7) do not satisfy i < j < k.

can access each necessary dual variable in O(1) time by
maintaining a pointer in the array to the next known
triplet (i, j, k) associated with a nonzero dual variable.
In this way the method can access the necessary dual
variables in O(1) time.

Using our new parallel execution schedule, the
triplets are no longer visited in a deterministic fash-
ion, so a new approach is necessary. Fortunately, our
approach is designed in such a way that each triplet
(i, j, k) is always visited by the same processor during
each different pass through the constraints. Further-
more, even though globally the triplets are not visited
in a deterministic fashion, each individual processor vis-
its its assigned triplets in the same deterministic order
at every iteration. Therefore, we can maintain dual vari-
ables efficiently by assigning an array to each processor,
allowing the processor to keep track of the next triplet it
will visit that will require a non-trivial correction step.
Thus the main difference between the serial and parallel
versions is simply that the latter requires we maintain
an array for each processor rather than a single array
for storing all dual variables. Accessing dual variables
is therefore still performed in O(1) time at each projec-
tion step and the theoretical memory complexity is the
same.

4 Experiments
We demonstrate the power of our new parallel approach
to metric-constrained optimization by using it to solve

the linear programming relaxation of correlation clus-
tering on several large instances. We find that using
even a modest number of cores consistently leads to a
speed up of roughly a factor 5, and up to a speedup
over a factor 10 on the largest problem, which involves
nearly 3 trillion constraints.

4.1 Implementation Details We implement a
solver for the metric-constrained LP relaxation of corre-
lation clustering by incorporating our new parallel exe-
cution schedule into our previous serial framework [37].
We use the Julia programming language, using its sup-
port for threaded computations to parallelize the inner
loops of our new approach to iterating through index
triplets. Our code is available publicly online at https:
//github.com/camruggles/ParallelDykstras. In
our experiments we compare against our previous serial
projection methods, available at at https://github.
com/nveldt/MetricOptimization.

4.2 Problem Construction and Datasets To test
our parallel solver we construct several large instances of
correlation clustering from undirected graphs following
the approach of Wang et al. [40], and including a
slight modification applied in previous work [37]. In
short, given a graph G = (V,E), we compute a signed
and weighted edge between each pair of nodes (i, j)
by computing the Jaccard index between the nodes
(which is always nonnegative) and applying a non-linear
function to obtain a signed value that either represents
similarity or dissimilarity between the nodes. We then
offset these scores by ±ε for a small ε > 0. This last
step ensures the result will be an instance of correlation
clustering in which each pair of nodes possesses a
nonzero weight and a sign. Partitioning the original
graph G using the correlation clustering objective can
be used as a way to perform community detection on
G. For our purposes, this construction leads to a dense
instance of correlation clustering that serves as a good
benchmark for solving the LP relaxation of correlation
clustering on a large scale.

We apply this procedure to five undirected and
unsigned graphs: the graph power from the Newman
group of matrices in the SuiteSparse Matrix Collec-
tion [12, 41], and four collaboration networks available
from the SNAP repository [29,30]: ca-GrQc, ca-HepTh,
ca-HepPh, and ca-AstroPh. We take the largest con-
nected component of each graph before converting it
into an instance of correlation clustering. The LP relax-
ation of the correlation clustering instance correspond-
ing to the largest graph (ca-AstroPh) has over 160 mil-
lion variables and 2.9 trillion constraints.

49 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.3 Machine Specifications and Computing En-
vironment Our experiments were almost exclusively
performed on a computer with 4 16-core Intel Xeon E7-
8867 v3 processors. For one experiment on the largest
graph, in which we wanted to run a large number of
cores, we used a machine with 8 24-core 2.7 GHz Intel
Xeon Platinum 8168 processors. For our experiments we
did not utilize exclusive access to the computers. Thus,
the reported runtimes vary depending on whether there
were other users simultaneously using the machine at
the same time as our experiments. This emulates the
natural and realistic performance that may be expected
in settings such as Amazon EC2, with multiple shared
VMs on a single machine.

4.4 The Effect of Reordering Constraints Dyk-
stra’s method is guaranteed to converge regardless of
the order in which the constraints are visited. However,
we found that in practice the number of iterations re-
quired to solve a problem to within a fixed tolerance
for constraint satisfaction and duality gap did vary de-
pending on the constraint ordering. In some cases, the
standard serial ordering led to a smaller overall iteration
count, though in many other cases the iteration count
was lower for our new approach for visiting triplets.
Given the variability between problem instances, in our
experiments we focus simply on the time it takes to com-
plete a fixed number of iterations of Dykstra’s method.
In this way, we are always comparing the time it takes
to visit and perform a step of Dykstra’s method at each
individual constraint exactly C times for some fixed in-
teger C.

4.5 Results In Table 1, we report results for running
our parallel code on all five graphs using 8, 16, and 32
cores. The runtime for 1 core comes from applying the
previous serial version of the algorithm [37]. For the
largest graph we additionally run our new algorithm
using 64 cores, which is the only experiment for which
we used the machine with 8 24-core processors. For
each graph we report the time it took in seconds to run
Dykstra’s method for 20 iterations, using a tile size of
b = 40. Running our method with 8 cores is consistently
4-5 times faster than the serial implementation. All of
the parallelism arises from processing elements along
a diagonal at the same time. This means that as the
algorithm departs from the main diagonal, there is less
work in processing a diagonal, but also less possibility
for parallel execution to be helpful. This causes a load
imbalance that prevents idealized parallel scaling. We
do continue to see performance gains as we increase the
number of cores used, which leads to a speedup of over
a factor ten on our largest graph.

Table 1: Results for parallel Dykstra’s method in solv-
ing the metric-constrained LP relaxation of correlation
clustering.
Graph Constr. Cores Time (s) Speedup

ca-GrQc 3.6× 1010 1 2632 1
n = 4158 8 562 4.68

16 429 6.14
32 358 7.35

Power 6.0× 1010 1 4521 1
n = 4941 8 890 5.08

16 696 6.50
32 576 7.85

ca-HepTh 3.2× 1011 1 19826 1
n = 8638 8 4682 4.23

16 3252 6.10
32 2603 7.62

ca-HepPh 7.0× 1011 1 47309 1
n = 11204 8 10313 4.59

16 7066 6.70
32 5889 8.03

ca-AstroPh 2.9× 1012 1 187045 1
n = 17903 8 40146 4.66

16 35397 5.28
32 24374 7.67
64 16325 11.46

In Figure 6 we display results specifically on ca-
HepPh using a wider range of core counts. We see
the performance of our method increase sharply at first
and slowly level off as we increase the number of cores.
Finally, we observe what happens as we vary the tile size
and keep the number of cores fixed. Figure 7 illustrates
the algorithm’s performance on ca-GrQc as we vary tile
size from 5 to 50 and keep the number of cores fixed at
16. The curve in the figure shows the speedup over the
serial implementation, which is above a factor 5 for all
tile sizes except 5. The performance peaks just above a
factor 6 speedup for a tile size of 25, and slowly begins
to decrease after this point.

5 Related Work
Our work is related to a number of different areas
in machine learning, optimization, graph theory, and
matrix computations.

Metric-Optimization and Projection Meth-
ods The parallel algorithms we have develop build di-
rectly on previous serial techniques for metric con-
strained optimization. These optimization problems
arise in algorithm design for graph clustering prob-

50 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

0 10 20 30 40

Number of Cores

0

2

4

6

8

10
S

p
e
e
d
u
p

Runtime Performance vs Cores

Figure 6: We display results for varying the number of
cores on ca-HepPh for a fixed tile size of 40. Results
are displayed for 1 core, and then for 8 to 40 cores in
increments of 4.

0 10 20 30 40 50

Tile Size

3.5

4

4.5

5

5.5

6

6.5

S
p
e
e
d
u
p
 F

a
c
to

r

Runtime Performance vs Tile Size

Figure 7: When we vary the tile size, performance
climbs to a peak and then slowly decreases if we increase
the tile size too much. Results are shown here for graph
ca-GrQc when tile size ranges from 5 to 50 in increments
of 5. The number of threads is fixed at 16.

lems [1, 10, 28, 38], image segmentation [21, 39], sensor
location [19, 20], metric nearness [8], and metric learn-
ing [6,7]. Sra et al. [36] were the first to apply projection
methods for metric-constrained optimization, by using
Dykstra’s method [16] to solve different variants of met-
ric nearness. In recent work [37], we developed improved
techniques for applying this method more broadly to
linear programming relaxations of graph clustering ob-
jectives.

Graph Coloring The parallel execution schedule
we have develop in this paper is related to a number
of different graph coloring problems. Consider a graph
in which every node corresponds to a triplet (i, j, k),
and edges connect nodes (i.e. triplets) if they share
two indices in common. Coloring the nodes in this

graph in such a way that no adjacent nodes share
the same color is equivalent to partitioning all triplets
into disjoint sets such that triplets within the same
set can be processed simultaneously by our projection
methods. Another approach would be to instead assign
each pair ij (i.e. each entry in the distance matrix
X = (xij)) to a node in a hypergraph, and for every
triplet of indices (i, j, k) define a hyperedge of the
form (ij, jk, ik). Then the problem of finding sets of
triplets to process simultaneous is equivalent to edge
coloring in 3-uniform hypergraphs [32]. In general,
graph coloring arises frequently as a way to determine
potential areas for concurrency when completing a given
task in parallel. We refer to several helpful resources
on coloring algorithms for parallel and multithreaded
computations [9, 18,33].

Block Matrix Multiplication Our tiled ap-
proach to triplet enumeration is inspired by techniques
for block matrix multiplication, which also involves dou-
bly indexed blocks of data and computational steps cor-
responding to a triplet of indices. Specifically, multiply-
ing the ij block of a matrix A with the jk block of
another matrix B is a step in block matrix-matrix mul-
tiplication (AB = C), that can be indexed by a triplet
(i, j, k). Our tiled triplet enumeration procedure is re-
lated to research on communication bounds for dense
matrix multiplication. The pioneering work of Hong
and Kung [24] proved a lower bound on the communi-
cation necessary to move data between slow and fast
memory in matrix multiplication. Irony, Toledo, and
Tiskin [25] later extended this result to distributed par-
allel computations. The state of the art numerical linear
algebra software package LAPACK [3] determines block
sizes automatically for efficient matrix-matrix compu-
tations. For an in-depth overview of communication-
avoiding and cache efficient algorithms for numerical
linear algebra, we refer to the work of Ballard et al. [4]
and Knight [27] (see in particular Section 5.5).

6 Discussion and Future Work
We have developed a new approach for parallel projec-
tion methods for metric-constrained optimization prob-
lems. These problems arise in a number of applications
but are challenging to solve due to their massive con-
straint set. There are also notable challenges in im-
plementing parallel solvers for these methods. Parallel
solvers for projection methods do exist, but they rely
on averaging out a large number of independent projec-
tions equal to the number of constraints, and for metric-
constrained optimization problems this is so many con-
straints that averaging the results in this way makes
no meaningful progress in each iteration towards a so-
lution. In our work we begin to overcome these chal-

51 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

lenges by demonstrating how to identify large sets of
projections at metric constraints that can be performed
simultaneously as a part of the standard Dykstra iter-
ate without affecting one another. Our approach al-
lows us to obtain consistent runtime improvements of
roughly a factor 5 using even a small number of cores,
and even better speedups on large problems. Our re-
sult demonstrate the challenges involved in efficiently
solving metric-constrained optimization problems, and
provide a first step in parallel techniques to solve them.
In the future we will continue to explore other ways
to visit metric constraints in parallel, as well as other
techniques that can leverage the highly structured con-
straint matrix of metric-constrained optimization prob-
lems in order to obtain speedups that are even more
significant.

References

[1] G. Agarwal and D. Kempe. Modularity-maximizing
graph communities via mathematical programming.
The European Physical Journal B, 66(3):409–418, Dec
2008.

[2] Nir Ailon, Moses Charikar, and Alantha Newman.
Aggregating inconsistent information: ranking and
clustering. Journal of the ACM (JACM), 55(5):23,
2008.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, third edition, 1999.

[4] Grey Ballard, Erin Carson, James Demmel, Mark
Hoemmen, Nicholas Knight, and Oded Schwartz.
Communication lower bounds and optimal algorithms
for numerical linear algebra. Acta Numerica, 23:1–155,
2014.

[5] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Cor-
relation clustering. Machine Learning, 56:89–113,
2004.

[6] D. Batra, R. Sukthankar, and T. Chen. Semi-
supervised clustering via learnt codeword distances. In
Proceedings of the British Machine Vision Conference,
BMVA 2008, pages 90.1–90.10. BMVA Press, 2008.
doi:10.5244/C.22.90.

[7] Arijit Biswas. Semi-supervised and Active Image Clus-
tering with Pairwise Constraints from Humans. PhD
thesis, University of Maryland, College Park, 2014.

[8] Justin Brickell, Inderjit S. Dhillon, Suvrit Sra, and
Joel A. Tropp. The metric nearness problem.
SIAM Journal on Matrix Analysis and Applications,
30(1):375–396, 2008.

[9] Ümit V Çatalyürek, John Feo, Assefaw H Gebremed-
hin, Mahantesh Halappanavar, and Alex Pothen.
Graph coloring algorithms for multi-core and mas-

sively multithreaded architectures. Parallel Comput-
ing, 38(10-11):576–594, 2012.

[10] Moses Charikar, Venkatesan Guruswami, and Anthony
Wirth. Clustering with qualitative information. Jour-
nal of Computer and System Sciences, 71(3):360 – 383,
2005. Learning Theory 2003.

[11] Shuchi Chawla, Konstantin Makarychev, Tselil
Schramm, and Grigory Yaroslavtsev. Near optimal
LP rounding algorithm for correlation clustering on
complete and complete k-partite graphs. In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, pages 219–228.
ACM, 2015.

[12] Timothy A. Davis and Yifan Hu. The university of
florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1–1:25, December 2011.

[13] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and
Nicole Immorlica. Correlation clustering in gen-
eral weighted graphs. Theoretical Computer Science,
361(2):172 – 187, 2006. Approximation and Online Al-
gorithms.

[14] Inderjit S Dhillon, Suvrit Sra, and Joel A Tropp. The
metric nearness problems with applications. Technical
report, 2003.

[15] Inderjit S. Dhillon, Suvrit Sra, and Joel A. Tropp. Tri-
angle fixing algorithms for the metric nearness prob-
lem. In Advances in Neural Information Processing
Systems 17, NIPS 2004, pages 361–368, Cambridge,
MA, USA, 2004. MIT Press.

[16] Richard L Dykstra. An algorithm for restricted least
squares regression. Journal of the American Statistical
Association, 78(384):837–842, 1983.

[17] R. Escalante and M. Raydan. Alternating Projection
Methods. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 2011.

[18] Assefaw H. Gebremedhin, Duc Nguyen, Md.
Mostofa Ali Patwary, and Alex Pothen. Colpack:
Software for graph coloring and related problems
in scientific computing. ACM Trans. Math. Softw.,
40(1):1:1–1:31, October 2013.

[19] Camillo Gentile. Sensor location through linear pro-
gramming with triangle inequality constraints. In
IEEE International Conference on Communications,
volume 5, pages 3192–3196. IEEE, 2005.

[20] Camillo Gentile. Distributed sensor location through
linear programming with triangle inequality con-
straints. IEEE transactions on wireless communica-
tions, 6(7), 2007.

[21] D. Glasner, S. N. Vitaladevuni, and R. Basri. Contour-
based joint clustering of multiple segmentations. In
Proceedings of the 2011 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2011, pages
2385–2392, Washington, DC, USA, 2011. IEEE Com-
puter Society.

[22] Shih-Ping Han. A successive projection method.
Mathematical Programming, 40(1-3):1–14, 1988.

[23] Clifford Hildreth. A quadratic programming proce-
dure. Naval Research Logistics (NRL), 4(1):79–85,

52 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1957.
[24] Jia-Wei Hong and Hsiang-Tsung Kung. I/o complex-

ity: The red-blue pebble game. In Proceedings of the
thirteenth annual ACM symposium on Theory of com-
puting, STOC ’81, pages 326–333. ACM, 1981.

[25] Dror Irony, Sivan Toledo, and Alexander Tiskin. Com-
munication lower bounds for distributed-memory ma-
trix multiplication. Journal of Parallel and Distributed
Computing, 64(9):1017–1026, 2004.

[26] Alfredo N Iusem and Alvaro R De Pierro. On the
convergence of Han’s method for convex programming
with quadratic objective. Mathematical Programming,
52(1-3):265–284, 1991.

[27] Nicholas Sullender Knight. Communication-Optimal
Loop Nests. PhD thesis, UC Berkeley, 2015.

[28] Tom Leighton and Satish Rao. Multicommodity max-
flow min-cut theorems and their use in designing ap-
proximation algorithms. Journal of the ACM (JACM),
46(6):787–832, November 1999.

[29] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.
Graph evolution: Densification and shrinking diame-
ters. ACM Trans. Knowl. Discov. Data, 1(1), March
2007.

[30] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection. http://
snap.stanford.edu/data, June 2014.

[31] O. L. Mangasarian. Normal solutions of linear pro-
grams. Mathematical Programming at Oberwolfach II,
pages 206–216, 1984.

[32] Pawełll Obszarski and Andrzej Jastrzȩbski. Edge-
coloring of 3-uniform hypergraphs. Discrete Applied
Mathematics, 217:48 – 52, 2017. Combinatorial Opti-
mization: Theory, Computation, and Applications.

[33] Md. Mostofa Ali Patwary, Assefaw H. Gebremedhin,
and Alex Pothen. New multithreaded ordering and
coloring algorithms for multicore architectures. In Em-
manuel Jeannot, Raymond Namyst, and Jean Roman,
editors, Euro-Par 2011 Parallel Processing, pages 250–
262, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

[34] Gregory J. Puleo and Olgica Milenkovic. Correla-
tion clustering with constrained cluster sizes and ex-
tended weights bounds. SIAM Journal on Optimiza-
tion, 25(3):1857–1872, 2015.

[35] Gregory J. Puleo and Olgica Milenkovic. Correlation
clustering and biclustering with locally bounded errors.
In Proceedings of the 33rd International Conference on
International Conference on Machine Learning, ICML
2016, pages 869–877. JMLR.org, 2016.

[36] Suvrit Sra, Joel Tropp, and Inderjit S. Dhillon. Tri-
angle fixing algorithms for the metric nearness prob-
lem. In L. K. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems,
pages 361–368. MIT Press, 2005.

[37] Nate Veldt, David Gleich, Anthony Wirth, and
James Saunderson. A projection method for
metric-constrained optimization. arXiv preprint
arXiv:1806.01678, 2018.

[38] Nate Veldt, David F. Gleich, and Anthony Wirth. A
correlation clustering framework for community detec-
tion. In Proceedings of the 2018 World Wide Web Con-
ference, WWW 2018, pages 439–448, 2018.

[39] S. N. Vitaladevuni and R. Basri. Co-clustering of
image segments using convex optimization applied to
em neuronal reconstruction. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, CVPR 2010, pages 2203–2210, June 2010.

[40] Yubo Wang, Linli Xu, Yucheng Chen, and Hao Wang.
A scalable approach for general correlation clustering.
In International Conference on Advanced Data Mining
and Applications, ADMA 2013, pages 13–24. Springer,
2013.

[41] Duncan J. Watts and Steven H. Strogatz. Collective
dynamics of ‘small-world’networks. Nature, 393:440
EP –, 06 1998.

53 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

07
/2

7/
20

 to
 7

3.
10

3.
76

.1
67

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

